master
/ src / generator.py

generator.py @c038f7f raw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
# coding=utf-8
"""Fairly basic set of tools for real-time data augmentation on image data.
Can easily be extended to include new transformations,
new preprocessing methods, etc...
"""
from __future__ import absolute_import
from __future__ import print_function

import re
from scipy import linalg
import scipy.ndimage as ndi
from six.moves import range
import os
from im_utils import *
import threading
import warnings
import multiprocessing.pool
from functools import partial

from keras import backend as K
from skimage import data, img_as_float
from skimage import exposure

from keras.utils.data_utils import Sequence

try:
    from PIL import Image as pil_image
except ImportError:
    pil_image = None

if pil_image is not None:
    _PIL_INTERPOLATION_METHODS = {
        'nearest': pil_image.NEAREST,
        'bilinear': pil_image.BILINEAR,
        'bicubic': pil_image.BICUBIC,
    }
    # These methods were only introduced in version 3.4.0 (2016).
    if hasattr(pil_image, 'HAMMING'):
        _PIL_INTERPOLATION_METHODS['hamming'] = pil_image.HAMMING
    if hasattr(pil_image, 'BOX'):
        _PIL_INTERPOLATION_METHODS['box'] = pil_image.BOX
    # This method is new in version 1.1.3 (2013).
    if hasattr(pil_image, 'LANCZOS'):
        _PIL_INTERPOLATION_METHODS['lanczos'] = pil_image.LANCZOS

CROP_MODE = ['center', 'random']


def random_rotation(x, rg, row_axis=1, col_axis=2, channel_axis=0,
                    fill_mode='nearest', cval=0.):
    """Performs a random rotation of a Numpy image tensor.

    # Arguments
        x: Input tensor. Must be 3D.
        rg: Rotation range, in degrees.
        row_axis: Index of axis for rows in the input tensor.
        col_axis: Index of axis for columns in the input tensor.
        channel_axis: Index of axis for channels in the input tensor.
        fill_mode: Points outside the boundaries of the input
            are filled according to the given mode
            (one of `{'constant', 'nearest', 'reflect', 'wrap'}`).
        cval: Value used for points outside the boundaries
            of the input if `mode='constant'`.

    # Returns
        Rotated Numpy image tensor.
    """
    theta = np.pi / 180 * np.random.uniform(-rg, rg)
    rotation_matrix = np.array([[np.cos(theta), -np.sin(theta), 0],
                                [np.sin(theta), np.cos(theta), 0],
                                [0, 0, 1]])

    h, w = x.shape[row_axis], x.shape[col_axis]
    transform_matrix = transform_matrix_offset_center(rotation_matrix, h, w)
    x = apply_transform(x, transform_matrix, channel_axis, fill_mode, cval)
    return x


def random_shift(x, wrg, hrg, row_axis=1, col_axis=2, channel_axis=0,
                 fill_mode='nearest', cval=0.):
    """Performs a random spatial shift of a Numpy image tensor.

    # Arguments
        x: Input tensor. Must be 3D.
        wrg: Width shift range, as a float fraction of the width.
        hrg: Height shift range, as a float fraction of the height.
        row_axis: Index of axis for rows in the input tensor.
        col_axis: Index of axis for columns in the input tensor.
        channel_axis: Index of axis for channels in the input tensor.
        fill_mode: Points outside the boundaries of the input
            are filled according to the given mode
            (one of `{'constant', 'nearest', 'reflect', 'wrap'}`).
        cval: Value used for points outside the boundaries
            of the input if `mode='constant'`.

    # Returns
        Shifted Numpy image tensor.
    """
    h, w = x.shape[row_axis], x.shape[col_axis]
    tx = np.random.uniform(-hrg, hrg) * h
    ty = np.random.uniform(-wrg, wrg) * w
    translation_matrix = np.array([[1, 0, tx],
                                   [0, 1, ty],
                                   [0, 0, 1]])

    transform_matrix = translation_matrix  # no need to do offset
    x = apply_transform(x, transform_matrix, channel_axis, fill_mode, cval)
    return x


def random_shear(x, intensity, row_axis=1, col_axis=2, channel_axis=0,
                 fill_mode='nearest', cval=0.):
    """Performs a random spatial shear of a Numpy image tensor.

    # Arguments
        x: Input tensor. Must be 3D.
        intensity: Transformation intensity.
        row_axis: Index of axis for rows in the input tensor.
        col_axis: Index of axis for columns in the input tensor.
        channel_axis: Index of axis for channels in the input tensor.
        fill_mode: Points outside the boundaries of the input
            are filled according to the given mode
            (one of `{'constant', 'nearest', 'reflect', 'wrap'}`).
        cval: Value used for points outside the boundaries
            of the input if `mode='constant'`.

    # Returns
        Sheared Numpy image tensor.
    """
    shear = np.random.uniform(-intensity, intensity)
    shear_matrix = np.array([[1, -np.sin(shear), 0],
                             [0, np.cos(shear), 0],
                             [0, 0, 1]])

    h, w = x.shape[row_axis], x.shape[col_axis]
    transform_matrix = transform_matrix_offset_center(shear_matrix, h, w)
    x = apply_transform(x, transform_matrix, channel_axis, fill_mode, cval)
    return x


def random_zoom(x, zoom_range, row_axis=1, col_axis=2, channel_axis=0,
                fill_mode='nearest', cval=0.):
    """Performs a random spatial zoom of a Numpy image tensor.

    # Arguments
        x: Input tensor. Must be 3D.
        zoom_range: Tuple of floats; zoom range for width and height.
        row_axis: Index of axis for rows in the input tensor.
        col_axis: Index of axis for columns in the input tensor.
        channel_axis: Index of axis for channels in the input tensor.
        fill_mode: Points outside the boundaries of the input
            are filled according to the given mode
            (one of `{'constant', 'nearest', 'reflect', 'wrap'}`).
        cval: Value used for points outside the boundaries
            of the input if `mode='constant'`.

    # Returns
        Zoomed Numpy image tensor.

    # Raises
        ValueError: if `zoom_range` isn't a tuple.
    """
    if len(zoom_range) != 2:
        raise ValueError('`zoom_range` should be a tuple or list of two floats. '
                         'Received arg: ', zoom_range)

    if zoom_range[0] == 1 and zoom_range[1] == 1:
        zx, zy = 1, 1
    else:
        zx, zy = np.random.uniform(zoom_range[0], zoom_range[1], 2)
    zoom_matrix = np.array([[zx, 0, 0],
                            [0, zy, 0],
                            [0, 0, 1]])

    h, w = x.shape[row_axis], x.shape[col_axis]
    transform_matrix = transform_matrix_offset_center(zoom_matrix, h, w)
    x = apply_transform(x, transform_matrix, channel_axis, fill_mode, cval)
    return x


def random_channel_shift(x, intensity, channel_axis=0):
    x = np.rollaxis(x, channel_axis, 0)
    min_x, max_x = np.min(x), np.max(x)
    channel_images = [np.clip(x_channel + np.random.uniform(-intensity, intensity), min_x, max_x)
                      for x_channel in x]
    x = np.stack(channel_images, axis=0)
    x = np.rollaxis(x, 0, channel_axis + 1)
    return x


def transform_matrix_offset_center(matrix, x, y):
    o_x = float(x) / 2 + 0.5
    o_y = float(y) / 2 + 0.5
    offset_matrix = np.array([[1, 0, o_x], [0, 1, o_y], [0, 0, 1]])
    reset_matrix = np.array([[1, 0, -o_x], [0, 1, -o_y], [0, 0, 1]])
    transform_matrix = np.dot(np.dot(offset_matrix, matrix), reset_matrix)
    return transform_matrix


def apply_transform(x,
                    transform_matrix,
                    channel_axis=0,
                    fill_mode='nearest',
                    cval=0.):
    """Apply the image transformation specified by a matrix.

    # Arguments
        x: 2D numpy array, single image.
        transform_matrix: Numpy array specifying the geometric transformation.
        channel_axis: Index of axis for channels in the input tensor.
        fill_mode: Points outside the boundaries of the input
            are filled according to the given mode
            (one of `{'constant', 'nearest', 'reflect', 'wrap'}`).
        cval: Value used for points outside the boundaries
            of the input if `mode='constant'`.

    # Returns
        The transformed version of the input.
    """
    x = np.rollaxis(x, channel_axis, 0)
    final_affine_matrix = transform_matrix[:2, :2]
    final_offset = transform_matrix[:2, 2]
    channel_images = [ndi.interpolation.affine_transform(
        x_channel,
        final_affine_matrix,
        final_offset,
        order=0,
        mode=fill_mode,
        cval=cval) for x_channel in x]
    x = np.stack(channel_images, axis=0)
    x = np.rollaxis(x, 0, channel_axis + 1)
    return x


def flip_axis(x, axis):
    x = np.asarray(x).swapaxes(axis, 0)
    x = x[::-1, ...]
    x = x.swapaxes(0, axis)
    return x


def array_to_img(x, data_format=None, scale=True):
    """Converts a 3D Numpy array to a PIL Image instance.

    # Arguments
        x: Input Numpy array.
        data_format: Image data format.
        scale: Whether to rescale image values
            to be within [0, 255].

    # Returns
        A PIL Image instance.

    # Raises
        ImportError: if PIL is not available.
        ValueError: if invalid `x` or `data_format` is passed.
    """
    if pil_image is None:
        raise ImportError('Could not import PIL.Image. '
                          'The use of `array_to_img` requires PIL.')
    x = np.asarray(x, dtype=K.floatx())
    if x.ndim != 3:
        raise ValueError('Expected image array to have rank 3 (single image). '
                         'Got array with shape:', x.shape)

    if data_format is None:
        data_format = K.image_data_format()
    if data_format not in {'channels_first', 'channels_last'}:
        raise ValueError('Invalid data_format:', data_format)

    # Original Numpy array x has format (height, width, channel)
    # or (channel, height, width)
    # but target PIL image has format (width, height, channel)
    if data_format == 'channels_first':
        x = x.transpose(1, 2, 0)
    if scale:
        x = x + max(-np.min(x), 0)
        x_max = np.max(x)
        if x_max != 0:
            x /= x_max
        x *= 255
    if x.shape[2] == 3:
        # RGB
        return pil_image.fromarray(x.astype('uint8'), 'RGB')
    elif x.shape[2] == 1:
        # grayscale
        return pil_image.fromarray(x[:, :, 0].astype('uint8'), 'L')
    else:
        raise ValueError('Unsupported channel number: ', x.shape[2])


def img_to_array(img, data_format=None):
    """Converts a PIL Image instance to a Numpy array.

    # Arguments
        img: PIL Image instance.
        data_format: Image data format.

    # Returns
        A 3D Numpy array.

    # Raises
        ValueError: if invalid `img` or `data_format` is passed.
    """
    if data_format is None:
        data_format = K.image_data_format()
    if data_format not in {'channels_first', 'channels_last'}:
        raise ValueError('Unknown data_format: ', data_format)
    # Numpy array x has format (height, width, channel)
    # or (channel, height, width)
    # but original PIL image has format (width, height, channel)
    x = np.asarray(img, dtype=K.floatx())
    if len(x.shape) == 3:
        if data_format == 'channels_first':
            x = x.transpose(2, 0, 1)
    elif len(x.shape) == 2:
        if data_format == 'channels_first':
            x = x.reshape((1, x.shape[0], x.shape[1]))
        else:
            x = x.reshape((x.shape[0], x.shape[1], 1))
    else:
        raise ValueError('Unsupported image shape: ', x.shape)
    return x


def load_img(path, grayscale=False, target_size=None,
             interpolation='bilinear', crop_mode=None):
    """Loads an image into PIL format.

    # Arguments
        path: Path to image file
        grayscale: Boolean, whether to load the image as grayscale.
        target_size: Either `None` (default to original size)
            or tuple of ints `(img_height, img_width)`.
        interpolation: Interpolation method used to resample the image if the
            target size is different from that of the loaded image.
            Supported methods are "nearest", "bilinear", and "bicubic".
            If PIL version 1.1.3 or newer is installed, "lanczos" is also
            supported. If PIL version 3.4.0 or newer is installed, "box" and
            "hamming" are also supported. By default, "bilinear" is used.

    # Returns
        A PIL Image instance.

    # Raises
        ImportError: if PIL is not available.
        ValueError: if interpolation method is not supported.
    """
    if pil_image is None:
        raise ImportError('Could not import PIL.Image. '
                          'The use of `array_to_img` requires PIL.')
    img = pil_image.open(path)
    if grayscale:
        if img.mode != 'L':
            img = img.convert('L')
    else:
        if img.mode != 'RGB':
            img = img.convert('RGB')
    if target_size is not None:
        width_height_tuple = (target_size[1], target_size[0])
        if img.size != width_height_tuple:
            if interpolation not in _PIL_INTERPOLATION_METHODS:
                raise ValueError(
                    'Invalid interpolation method {} specified. Supported '
                    'methods are {}'.format(
                        interpolation,
                        ", ".join(_PIL_INTERPOLATION_METHODS.keys())))
            # 此处改写Keras自带的resize逻辑,支持等比裁剪
            # img = img.resize(width_height_tuple, resample)
            if crop_mode is None:
                img = img.resize(width_height_tuple)
            else:
                if width_height_tuple[0] != width_height_tuple[1]:
                    raise Exception('The width_height_tuple size must be equal.')
                if crop_mode not in CROP_MODE:
                    raise Exception('The crop mode "%s" not support.' % crop_mode)
                if crop_mode == 'random':
                    img = random_crop(img, width_height_tuple[0])
                elif crop_mode == 'center':
                    img = center_crop(img, width_height_tuple[0])

    return img


def list_pictures(directory, ext='jpg|jpeg|bmp|png|ppm'):
    return [os.path.join(root, f)
            for root, _, files in os.walk(directory) for f in files
            if re.match(r'([\w]+\.(?:' + ext + '))', f)]


class ImageDataGenerator(object):
    """Generate minibatches of image data with real-time data augmentation.

    # Arguments
        featurewise_center: set input mean to 0 over the dataset.
        samplewise_center: set each sample mean to 0.
        featurewise_std_normalization: divide inputs by std of the dataset.
        samplewise_std_normalization: divide each input by its std.
        zca_whitening: apply ZCA whitening.
        zca_epsilon: epsilon for ZCA whitening. Default is 1e-6.
        rotation_range: degrees (0 to 180).
        width_shift_range: fraction of total width.
        height_shift_range: fraction of total height.
        shear_range: shear intensity (shear angle in radians).
        zoom_range: amount of zoom. if scalar z, zoom will be randomly picked
            in the range [1-z, 1+z]. A sequence of two can be passed instead
            to select this range.
        channel_shift_range: shift range for each channel.
        fill_mode: points outside the boundaries are filled according to the
            given mode ('constant', 'nearest', 'reflect' or 'wrap'). Default
            is 'nearest'.
        cval: value used for points outside the boundaries when fill_mode is
            'constant'. Default is 0.
        horizontal_flip: whether to randomly flip images horizontally.
        vertical_flip: whether to randomly flip images vertically.
        rescale: rescaling factor. If None or 0, no rescaling is applied,
            otherwise we multiply the data by the value provided. This is
            applied after the `preprocessing_function` (if any provided)
            but before any other transformation.
        preprocessing_function: function that will be implied on each input.
            The function will run before any other modification on it.
            The function should take one argument:
            one image (Numpy tensor with rank 3),
            and should output a Numpy tensor with the same shape.
        data_format: 'channels_first' or 'channels_last'. In 'channels_first' mode, the channels dimension
            (the depth) is at index 1, in 'channels_last' mode it is at index 3.
            It defaults to the `image_data_format` value found in your
            Keras config file at `~/.keras/keras.json`.
            If you never set it, then it will be "channels_last".
    """

    def __init__(self,
                 contrast_stretching=False,  #####
                 histogram_equalization=False,  #####
                 adaptive_equalization=False,  #####
                 featurewise_center=False,
                 samplewise_center=False,
                 featurewise_std_normalization=False,
                 samplewise_std_normalization=False,
                 zca_whitening=False,
                 zca_epsilon=1e-6,
                 rotation_range=0.,
                 width_shift_range=0.,
                 height_shift_range=0.,
                 shear_range=0.,
                 zoom_range=0.,
                 channel_shift_range=0.,
                 fill_mode='nearest',
                 cval=0.,
                 horizontal_flip=False,
                 vertical_flip=False,
                 rescale=None,
                 preprocessing_function=None,
                 data_format=None):
        if data_format is None:
            data_format = K.image_data_format()
        self.contrast_stretching = contrast_stretching  #####
        self.adaptive_equalization = adaptive_equalization  #####
        self.histogram_equalization = histogram_equalization  #####
        self.featurewise_center = featurewise_center
        self.samplewise_center = samplewise_center
        self.featurewise_std_normalization = featurewise_std_normalization
        self.samplewise_std_normalization = samplewise_std_normalization
        self.zca_whitening = zca_whitening
        self.zca_epsilon = zca_epsilon
        self.rotation_range = rotation_range
        self.width_shift_range = width_shift_range
        self.height_shift_range = height_shift_range
        self.shear_range = shear_range
        self.zoom_range = zoom_range
        self.channel_shift_range = channel_shift_range
        self.fill_mode = fill_mode
        self.cval = cval
        self.horizontal_flip = horizontal_flip
        self.vertical_flip = vertical_flip
        self.rescale = rescale
        self.preprocessing_function = preprocessing_function

        if data_format not in {'channels_last', 'channels_first'}:
            raise ValueError('`data_format` should be `"channels_last"` (channel after row and '
                             'column) or `"channels_first"` (channel before row and column). '
                             'Received arg: ', data_format)
        self.data_format = data_format
        if data_format == 'channels_first':
            self.channel_axis = 1
            self.row_axis = 2
            self.col_axis = 3
        if data_format == 'channels_last':
            self.channel_axis = 3
            self.row_axis = 1
            self.col_axis = 2

        self.mean = None
        self.std = None
        self.principal_components = None

        if np.isscalar(zoom_range):
            self.zoom_range = [1 - zoom_range, 1 + zoom_range]
        elif len(zoom_range) == 2:
            self.zoom_range = [zoom_range[0], zoom_range[1]]
        else:
            raise ValueError('`zoom_range` should be a float or '
                             'a tuple or list of two floats. '
                             'Received arg: ', zoom_range)

    def flow(self, x, y=None, batch_size=32, shuffle=True, seed=None,
             save_to_dir=None, save_prefix='', save_format='png'):
        return NumpyArrayIterator(
            x, y, self,
            batch_size=batch_size,
            shuffle=shuffle,
            seed=seed,
            data_format=self.data_format,
            save_to_dir=save_to_dir,
            save_prefix=save_prefix,
            save_format=save_format)

    def flow_from_directory(self, directory,
                            target_size=(256, 256), color_mode='rgb',
                            classes=None, class_mode='categorical',
                            batch_size=32, shuffle=True, seed=None,
                            save_to_dir=None,
                            save_prefix='',
                            save_format='png',
                            follow_links=False,
                            crop_mode=None,
                            batch_handler=None):
        return DirectoryIterator(
            directory, self,
            target_size=target_size, color_mode=color_mode,
            classes=classes, class_mode=class_mode,
            data_format=self.data_format,
            batch_size=batch_size, shuffle=shuffle, seed=seed,
            save_to_dir=save_to_dir,
            save_prefix=save_prefix,
            save_format=save_format,
            follow_links=follow_links,
            crop_mode=crop_mode,
            batch_handler=batch_handler
        )

    def standardize(self, x):
        """Apply the normalization configuration to a batch of inputs.

        # Arguments
            x: batch of inputs to be normalized.

        # Returns
            The inputs, normalized.
        """
        if self.preprocessing_function:
            x = self.preprocessing_function(x)
        if self.rescale:
            x *= self.rescale
        if self.samplewise_center:
            x -= np.mean(x, keepdims=True)
        if self.samplewise_std_normalization:
            x /= np.std(x, keepdims=True) + 1e-7

        if self.featurewise_center:
            if self.mean is not None:
                x -= self.mean
            else:
                warnings.warn('This ImageDataGenerator specifies '
                              '`featurewise_center`, but it hasn\'t'
                              'been fit on any training data. Fit it '
                              'first by calling `.fit(numpy_data)`.')
        if self.featurewise_std_normalization:
            if self.std is not None:
                x /= (self.std + 1e-7)
            else:
                warnings.warn('This ImageDataGenerator specifies '
                              '`featurewise_std_normalization`, but it hasn\'t'
                              'been fit on any training data. Fit it '
                              'first by calling `.fit(numpy_data)`.')
        if self.zca_whitening:
            if self.principal_components is not None:
                flatx = np.reshape(x, (-1, np.prod(x.shape[-3:])))
                whitex = np.dot(flatx, self.principal_components)
                x = np.reshape(whitex, x.shape)
            else:
                warnings.warn('This ImageDataGenerator specifies '
                              '`zca_whitening`, but it hasn\'t'
                              'been fit on any training data. Fit it '
                              'first by calling `.fit(numpy_data)`.')
        return x

    def random_transform(self, x, seed=None):
        """Randomly augment a single image tensor.

        # Arguments
            x: 3D tensor, single image.
            seed: random seed.

        # Returns
            A randomly transformed version of the input (same shape).
        """
        # x is a single image, so it doesn't have image number at index 0
        img_row_axis = self.row_axis - 1
        img_col_axis = self.col_axis - 1
        img_channel_axis = self.channel_axis - 1

        if seed is not None:
            np.random.seed(seed)

        # use composition of homographies
        # to generate final transform that needs to be applied
        if self.rotation_range:
            theta = np.pi / 180 * np.random.uniform(-self.rotation_range, self.rotation_range)
        else:
            theta = 0

        if self.height_shift_range:
            tx = np.random.uniform(-self.height_shift_range, self.height_shift_range) * x.shape[img_row_axis]
        else:
            tx = 0

        if self.width_shift_range:
            ty = np.random.uniform(-self.width_shift_range, self.width_shift_range) * x.shape[img_col_axis]
        else:
            ty = 0

        if self.shear_range:
            shear = np.random.uniform(-self.shear_range, self.shear_range)
        else:
            shear = 0

        if self.zoom_range[0] == 1 and self.zoom_range[1] == 1:
            zx, zy = 1, 1
        else:
            zx, zy = np.random.uniform(self.zoom_range[0], self.zoom_range[1], 2)

        transform_matrix = None
        if theta != 0:
            rotation_matrix = np.array([[np.cos(theta), -np.sin(theta), 0],
                                        [np.sin(theta), np.cos(theta), 0],
                                        [0, 0, 1]])
            transform_matrix = rotation_matrix

        if tx != 0 or ty != 0:
            shift_matrix = np.array([[1, 0, tx],
                                     [0, 1, ty],
                                     [0, 0, 1]])
            transform_matrix = shift_matrix if transform_matrix is None else np.dot(transform_matrix, shift_matrix)

        if shear != 0:
            shear_matrix = np.array([[1, -np.sin(shear), 0],
                                     [0, np.cos(shear), 0],
                                     [0, 0, 1]])
            transform_matrix = shear_matrix if transform_matrix is None else np.dot(transform_matrix, shear_matrix)

        if zx != 1 or zy != 1:
            zoom_matrix = np.array([[zx, 0, 0],
                                    [0, zy, 0],
                                    [0, 0, 1]])
            transform_matrix = zoom_matrix if transform_matrix is None else np.dot(transform_matrix, zoom_matrix)

        if transform_matrix is not None:
            h, w = x.shape[img_row_axis], x.shape[img_col_axis]
            transform_matrix = transform_matrix_offset_center(transform_matrix, h, w)
            x = apply_transform(x, transform_matrix, img_channel_axis,
                                fill_mode=self.fill_mode, cval=self.cval)

        if self.channel_shift_range != 0:
            x = random_channel_shift(x,
                                     self.channel_shift_range,
                                     img_channel_axis)
        if self.horizontal_flip:
            if np.random.random() < 0.5:
                x = flip_axis(x, img_col_axis)

        if self.vertical_flip:
            if np.random.random() < 0.5:
                x = flip_axis(x, img_row_axis)

        if self.contrast_stretching:  #####
            if np.random.random() < 0.5:  #####
                p2, p98 = np.percentile(x, (2, 98))  #####
                x = exposure.rescale_intensity(x.astype(np.uint8), in_range=(p2, p98))  #####

        if self.adaptive_equalization:  #####
            if np.random.random() < 0.5:  #####
                x = exposure.equalize_adapthist(x.astype(np.uint8), clip_limit=0.03)  #####
                x = exposure.equalize_adapthist(x, clip_limit=0.03)  #####
                x *= 255

        if self.histogram_equalization:  #####
            if np.random.random() < 0.5:  #####
                x = exposure.equalize_hist(x).astype(np.uint8)  #####
                x *= 255

        if x.dtype == np.uint8:
            x = x.astype(np.float32)
        return x

    def fit(self, x,
            augment=False,
            rounds=1,
            seed=None):
        """Fits internal statistics to some sample data.

        Required for featurewise_center, featurewise_std_normalization
        and zca_whitening.

        # Arguments
            x: Numpy array, the data to fit on. Should have rank 4.
                In case of grayscale data,
                the channels axis should have value 1, and in case
                of RGB data, it should have value 3.
            augment: Whether to fit on randomly augmented samples
            rounds: If `augment`,
                how many augmentation passes to do over the data
            seed: random seed.

        # Raises
            ValueError: in case of invalid input `x`.
        """
        x = np.asarray(x, dtype=K.floatx())
        if x.ndim != 4:
            raise ValueError('Input to `.fit()` should have rank 4. '
                             'Got array with shape: ' + str(x.shape))
        if x.shape[self.channel_axis] not in {1, 3, 4}:
            warnings.warn(
                'Expected input to be images (as Numpy array) '
                'following the data format convention "' + self.data_format + '" '
                                                                              '(channels on axis ' + str(
                    self.channel_axis) + '), i.e. expected '
                                         'either 1, 3 or 4 channels on axis ' + str(self.channel_axis) + '. '
                                                                                                         'However, it was passed an array with shape ' + str(
                    x.shape) +
                ' (' + str(x.shape[self.channel_axis]) + ' channels).')

        if seed is not None:
            np.random.seed(seed)

        x = np.copy(x)
        if augment:
            ax = np.zeros(tuple([rounds * x.shape[0]] + list(x.shape)[1:]), dtype=K.floatx())
            for r in range(rounds):
                for i in range(x.shape[0]):
                    ax[i + r * x.shape[0]] = self.random_transform(x[i])
            x = ax

        if self.featurewise_center:
            self.mean = np.mean(x, axis=(0, self.row_axis, self.col_axis))
            broadcast_shape = [1, 1, 1]
            broadcast_shape[self.channel_axis - 1] = x.shape[self.channel_axis]
            self.mean = np.reshape(self.mean, broadcast_shape)
            x -= self.mean

        if self.featurewise_std_normalization:
            self.std = np.std(x, axis=(0, self.row_axis, self.col_axis))
            broadcast_shape = [1, 1, 1]
            broadcast_shape[self.channel_axis - 1] = x.shape[self.channel_axis]
            self.std = np.reshape(self.std, broadcast_shape)
            x /= (self.std + K.epsilon())

        if self.zca_whitening:
            flat_x = np.reshape(x, (x.shape[0], x.shape[1] * x.shape[2] * x.shape[3]))
            sigma = np.dot(flat_x.T, flat_x) / flat_x.shape[0]
            u, s, _ = linalg.svd(sigma)
            self.principal_components = np.dot(np.dot(u, np.diag(1. / np.sqrt(s + self.zca_epsilon))), u.T)


class Iterator(Sequence):
    """Base class for image data iterators.

    Every `Iterator` must implement the `_get_batches_of_transformed_samples`
    method.

    # Arguments
        n: Integer, total number of samples in the dataset to loop over.
        batch_size: Integer, size of a batch.
        shuffle: Boolean, whether to shuffle the data between epochs.
        seed: Random seeding for data shuffling.
    """

    def __init__(self, n, batch_size, shuffle, seed):
        self.n = n
        self.batch_size = batch_size
        self.seed = seed
        self.shuffle = shuffle
        self.batch_index = 0
        self.total_batches_seen = 0
        self.lock = threading.Lock()
        self.index_array = None
        self.index_generator = self._flow_index()

    def _set_index_array(self):
        self.index_array = np.arange(self.n)
        if self.shuffle:
            self.index_array = np.random.permutation(self.n)

    def __getitem__(self, idx):
        if idx >= len(self):
            raise ValueError('Asked to retrieve element {idx}, '
                             'but the Sequence '
                             'has length {length}'.format(idx=idx,
                                                          length=len(self)))
        if self.seed is not None:
            np.random.seed(self.seed + self.total_batches_seen)
        self.total_batches_seen += 1
        if self.index_array is None:
            self._set_index_array()
        index_array = self.index_array[self.batch_size * idx:
                                       self.batch_size * (idx + 1)]
        return self._get_batches_of_transformed_samples(index_array)

    def __len__(self):
        return int(np.ceil(self.n / float(self.batch_size)))

    def on_epoch_end(self):
        self._set_index_array()

    def reset(self):
        self.batch_index = 0

    def _flow_index(self):
        # Ensure self.batch_index is 0.
        self.reset()
        while 1:
            if self.seed is not None:
                np.random.seed(self.seed + self.total_batches_seen)
            if self.batch_index == 0:
                self._set_index_array()

            current_index = (self.batch_index * self.batch_size) % self.n
            if self.n > current_index + self.batch_size:
                self.batch_index += 1
            else:
                self.batch_index = 0
            self.total_batches_seen += 1
            yield self.index_array[current_index:
                                   current_index + self.batch_size]

    def __iter__(self):
        # Needed if we want to do something like:
        # for x, y in data_gen.flow(...):
        return self

    def __next__(self, *args, **kwargs):
        return self.next(*args, **kwargs)

    def _get_batches_of_transformed_samples(self, index_array):
        """Gets a batch of transformed samples.

        # Arguments
            index_array: array of sample indices to include in batch.

        # Returns
            A batch of transformed samples.
        """
        raise NotImplementedError


class NumpyArrayIterator(Iterator):
    """Iterator yielding data from a Numpy array.

    # Arguments
        x: Numpy array of input data.
        y: Numpy array of targets data.
        image_data_generator: Instance of `ImageDataGenerator`
            to use for random transformations and normalization.
        batch_size: Integer, size of a batch.
        shuffle: Boolean, whether to shuffle the data between epochs.
        seed: Random seed for data shuffling.
        data_format: String, one of `channels_first`, `channels_last`.
        save_to_dir: Optional directory where to save the pictures
            being yielded, in a viewable format. This is useful
            for visualizing the random transformations being
            applied, for debugging purposes.
        save_prefix: String prefix to use for saving sample
            images (if `save_to_dir` is set).
        save_format: Format to use for saving sample images
            (if `save_to_dir` is set).
    """

    def __init__(self, x, y, image_data_generator,
                 batch_size=32, shuffle=False, seed=None,
                 data_format=None,
                 save_to_dir=None, save_prefix='', save_format='png'):
        if y is not None and len(x) != len(y):
            raise ValueError('X (images tensor) and y (labels) '
                             'should have the same length. '
                             'Found: X.shape = %s, y.shape = %s' %
                             (np.asarray(x).shape, np.asarray(y).shape))

        if data_format is None:
            data_format = K.image_data_format()
        self.x = np.asarray(x, dtype=K.floatx())

        if self.x.ndim != 4:
            raise ValueError('Input data in `NumpyArrayIterator` '
                             'should have rank 4. You passed an array '
                             'with shape', self.x.shape)
        channels_axis = 3 if data_format == 'channels_last' else 1
        if self.x.shape[channels_axis] not in {1, 3, 4}:
            warnings.warn('NumpyArrayIterator is set to use the '
                          'data format convention "' + data_format + '" '
                                                                     '(channels on axis ' + str(
                channels_axis) + '), i.e. expected '
                                 'either 1, 3 or 4 channels on axis ' + str(channels_axis) + '. '
                                                                                             'However, it was passed an array with shape ' + str(
                self.x.shape) +
                          ' (' + str(self.x.shape[channels_axis]) + ' channels).')
        if y is not None:
            self.y = np.asarray(y)
        else:
            self.y = None
        self.image_data_generator = image_data_generator
        self.data_format = data_format
        self.save_to_dir = save_to_dir
        self.save_prefix = save_prefix
        self.save_format = save_format
        super(NumpyArrayIterator, self).__init__(x.shape[0], batch_size, shuffle, seed)

    def _get_batches_of_transformed_samples(self, index_array):
        batch_x = np.zeros(tuple([len(index_array)] + list(self.x.shape)[1:]),
                           dtype=K.floatx())
        for i, j in enumerate(index_array):
            x = self.x[j]
            x = self.image_data_generator.random_transform(x.astype(K.floatx()))
            x = self.image_data_generator.standardize(x)
            batch_x[i] = x
        if self.save_to_dir:
            for i, j in enumerate(index_array):
                img = array_to_img(batch_x[i], self.data_format, scale=True)
                fname = '{prefix}_{index}_{hash}.{format}'.format(prefix=self.save_prefix,
                                                                  index=j,
                                                                  hash=np.random.randint(1e4),
                                                                  format=self.save_format)
                img.save(os.path.join(self.save_to_dir, fname))
        if self.y is None:
            return batch_x
        batch_y = self.y[index_array]
        return batch_x, batch_y

    def next(self):
        """For python 2.x.

        # Returns
            The next batch.
        """
        # Keeps under lock only the mechanism which advances
        # the indexing of each batch.
        with self.lock:
            index_array = next(self.index_generator)
        # The transformation of images is not under thread lock
        # so it can be done in parallel
        return self._get_batches_of_transformed_samples(index_array)


def _count_valid_files_in_directory(directory, white_list_formats, follow_links):
    """Count files with extension in `white_list_formats` contained in a directory.

    # Arguments
        directory: absolute path to the directory containing files to be counted
        white_list_formats: set of strings containing allowed extensions for
            the files to be counted.

    # Returns
        the count of files with extension in `white_list_formats` contained in
        the directory.
    """

    def _recursive_list(subpath):
        return sorted(os.walk(subpath, followlinks=follow_links), key=lambda tpl: tpl[0])

    samples = 0
    for root, _, files in _recursive_list(directory):
        for fname in files:
            is_valid = False
            for extension in white_list_formats:
                if fname.lower().endswith('.' + extension):
                    is_valid = True
                    break
            if is_valid:
                samples += 1
    return samples


def _list_valid_filenames_in_directory(directory, white_list_formats,
                                       class_indices, follow_links):
    """List paths of files in `subdir` relative from `directory` whose extensions are in `white_list_formats`.

    # Arguments
        directory: absolute path to a directory containing the files to list.
            The directory name is used as class label and must be a key of `class_indices`.
        white_list_formats: set of strings containing allowed extensions for
            the files to be counted.
        class_indices: dictionary mapping a class name to its index.

    # Returns
        classes: a list of class indices
        filenames: the path of valid files in `directory`, relative from
            `directory`'s parent (e.g., if `directory` is "dataset/class1",
            the filenames will be ["class1/file1.jpg", "class1/file2.jpg", ...]).
    """

    def _recursive_list(subpath):
        return sorted(os.walk(subpath, followlinks=follow_links), key=lambda tpl: tpl[0])

    classes = []
    filenames = []
    subdir = os.path.basename(directory)
    basedir = os.path.dirname(directory)
    for root, _, files in _recursive_list(directory):
        for fname in sorted(files):
            is_valid = False
            for extension in white_list_formats:
                if fname.lower().endswith('.' + extension):
                    is_valid = True
                    break
            if is_valid:
                classes.append(class_indices[subdir])
                # add filename relative to directory
                absolute_path = os.path.join(root, fname)
                filenames.append(os.path.relpath(absolute_path, basedir))
    return classes, filenames


class DirectoryIterator(Iterator):
    """Iterator capable of reading images from a directory on disk.

    # Arguments
        directory: Path to the directory to read images from.
            Each subdirectory in this directory will be
            considered to contain images from one class,
            or alternatively you could specify class subdirectories
            via the `classes` argument.
        image_data_generator: Instance of `ImageDataGenerator`
            to use for random transformations and normalization.
        target_size: tuple of integers, dimensions to resize input images to.
        color_mode: One of `"rgb"`, `"grayscale"`. Color mode to read images.
        classes: Optional list of strings, names of subdirectories
            containing images from each class (e.g. `["dogs", "cats"]`).
            It will be computed automatically if not set.
        class_mode: Mode for yielding the targets:
            `"binary"`: binary targets (if there are only two classes),
            `"categorical"`: categorical targets,
            `"sparse"`: integer targets,
            `"input"`: targets are images identical to input images (mainly
                used to work with autoencoders),
            `None`: no targets get yielded (only input images are yielded).
        batch_size: Integer, size of a batch.
        shuffle: Boolean, whether to shuffle the data between epochs.
        seed: Random seed for data shuffling.
        data_format: String, one of `channels_first`, `channels_last`.
        save_to_dir: Optional directory where to save the pictures
            being yielded, in a viewable format. This is useful
            for visualizing the random transformations being
            applied, for debugging purposes.
        save_prefix: String prefix to use for saving sample
            images (if `save_to_dir` is set).
        save_format: Format to use for saving sample images
            (if `save_to_dir` is set).
    """

    def __init__(self, directory, image_data_generator,
                 target_size=(256, 256), color_mode='rgb',
                 classes=None, class_mode='categorical',
                 batch_size=32, shuffle=True, seed=None,
                 data_format=None,
                 save_to_dir=None, save_prefix='', save_format='png',
                 follow_links=False, crop_mode=None, batch_handler=None):
        if data_format is None:
            data_format = K.image_data_format()
        print('The crop mode is %s.' % crop_mode)
        self.crop_mode = crop_mode
        self.batch_handler = batch_handler
        self.directory = directory
        self.image_data_generator = image_data_generator
        self.target_size = tuple(target_size)
        if color_mode not in {'rgb', 'grayscale'}:
            raise ValueError('Invalid color mode:', color_mode,
                             '; expected "rgb" or "grayscale".')
        self.color_mode = color_mode
        self.data_format = data_format
        if self.color_mode == 'rgb':
            if self.data_format == 'channels_last':
                self.image_shape = self.target_size + (3,)
            else:
                self.image_shape = (3,) + self.target_size
        else:
            if self.data_format == 'channels_last':
                self.image_shape = self.target_size + (1,)
            else:
                self.image_shape = (1,) + self.target_size
        self.classes = classes
        if class_mode not in {'categorical', 'binary', 'sparse',
                              'input', None}:
            raise ValueError('Invalid class_mode:', class_mode,
                             '; expected one of "categorical", '
                             '"binary", "sparse", "input"'
                             ' or None.')
        self.class_mode = class_mode
        self.save_to_dir = save_to_dir
        self.save_prefix = save_prefix
        self.save_format = save_format

        white_list_formats = {'png', 'jpg', 'jpeg', 'bmp', 'ppm'}

        # first, count the number of samples and classes
        self.samples = 0

        if not classes:
            classes = []
            for subdir in sorted(os.listdir(directory)):
                if os.path.isdir(os.path.join(directory, subdir)):
                    classes.append(subdir)
        self.num_classes = len(classes)
        self.class_indices = dict(zip(classes, range(len(classes))))

        pool = multiprocessing.pool.ThreadPool()
        function_partial = partial(_count_valid_files_in_directory,
                                   white_list_formats=white_list_formats,
                                   follow_links=follow_links)
        self.samples = sum(pool.map(function_partial,
                                    (os.path.join(directory, subdir)
                                     for subdir in classes)))

        print('Found %d images belonging to %d classes.' % (self.samples, self.num_classes))

        # second, build an index of the images in the different class subfolders
        results = []

        self.filenames = []
        self.classes = np.zeros((self.samples,), dtype='int32')
        i = 0
        for dirpath in (os.path.join(directory, subdir) for subdir in classes):
            results.append(pool.apply_async(_list_valid_filenames_in_directory,
                                            (dirpath, white_list_formats,
                                             self.class_indices, follow_links)))
        for res in results:
            classes, filenames = res.get()
            self.classes[i:i + len(classes)] = classes
            self.filenames += filenames
            i += len(classes)
        pool.close()
        pool.join()
        super(DirectoryIterator, self).__init__(self.samples, batch_size, shuffle, seed)

    def _get_batches_of_transformed_samples(self, index_array):
        batch_x = np.zeros((len(index_array),) + self.image_shape, dtype=K.floatx())
        grayscale = self.color_mode == 'grayscale'
        # build batch of image data
        for i, j in enumerate(index_array):
            fname = self.filenames[j]
            img = load_img(os.path.join(self.directory, fname),
                           grayscale=grayscale,
                           target_size=self.target_size,
                           crop_mode=self.crop_mode)
            x = img_to_array(img, data_format=self.data_format)
            if self.image_data_generator:
                x = self.image_data_generator.random_transform(x)
                x = self.image_data_generator.standardize(x)
            batch_x[i] = x
        if self.batch_handler:
            batch_x = self.batch_handler(batch_x)
        # optionally save augmented images to disk for debugging purposes
        if self.save_to_dir:
            for i, j in enumerate(index_array):
                img = array_to_img(batch_x[i], self.data_format, scale=True)
                fname = '{prefix}_{index}_{hash}.{format}'.format(prefix=self.save_prefix,
                                                                  index=j,
                                                                  hash=np.random.randint(1e7),
                                                                  format=self.save_format)
                img.save(os.path.join(self.save_to_dir, fname))
        # build batch of labels
        if self.class_mode == 'input':
            batch_y = batch_x.copy()
        elif self.class_mode == 'sparse':
            batch_y = self.classes[index_array]
        elif self.class_mode == 'binary':
            batch_y = self.classes[index_array].astype(K.floatx())
        elif self.class_mode == 'categorical':
            batch_y = np.zeros((len(batch_x), self.num_classes), dtype=K.floatx())
            for i, label in enumerate(self.classes[index_array]):
                batch_y[i, label] = 1.
        else:
            return batch_x
        return batch_x, batch_y

    def next(self):
        """For python 2.x.

        # Returns
            The next batch.
        """
        with self.lock:
            index_array = next(self.index_generator)
        # The transformation of images is not under thread lock
        # so it can be done in parallel
        return self._get_batches_of_transformed_samples(index_array)