master
/ 02.02 决策树.ipynb

02.02 决策树.ipynb @master

4b0cb67
 
 
 
 
 
32f9dec
4b0cb67
 
 
 
 
 
cf9f12d
47bf824
cf9f12d
47bf824
 
 
 
cf9f12d
47bf824
cf9f12d
47bf824
cf9f12d
 
 
 
 
 
 
 
47bf824
 
 
 
 
 
cf9f12d
 
 
47bf824
 
 
 
cf9f12d
 
47bf824
 
 
 
 
 
 
cf9f12d
 
 
 
 
 
 
 
 
 
47bf824
cf9f12d
47bf824
cf9f12d
 
 
 
 
 
 
 
 
 
4b0cb67
 
 
 
 
 
32f9dec
4b0cb67
 
cf9f12d
 
 
 
 
 
 
 
 
 
 
 
 
 
4b0cb67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2350f2b
4b0cb67
 
 
 
 
 
cf9f12d
 
 
 
 
 
 
 
 
4b0cb67
 
cf9f12d
4b0cb67
 
 
 
cf9f12d
4b0cb67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2350f2b
 
 
 
cf9f12d
 
 
 
 
 
 
 
2350f2b
 
4b0cb67
 
d2061bc
4b0cb67
 
 
 
 
 
 
 
 
 
cf9f12d
4b0cb67
 
 
 
d2061bc
 
 
4b0cb67
 
 
cf9f12d
 
 
 
 
 
 
 
 
 
 
 
 
 
4b0cb67
 
cf9f12d
4b0cb67
 
 
 
 
 
 
 
 
 
 
 
 
cf9f12d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b0cb67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf9f12d
4b0cb67
 
 
 
 
 
cf9f12d
 
 
 
 
 
 
4b0cb67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf9f12d
4b0cb67
cf9f12d
 
4b0cb67
 
 
 
 
 
 
 
 
 
cf9f12d
4b0cb67
 
 
 
 
 
 
 
32f9dec
4b0cb67
 
 
 
 
 
 
 
 
47bf824
4b0cb67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32f9dec
4b0cb67
cf9f12d
32f9dec
4b0cb67
 
47bf824
4b0cb67
 
cf9f12d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b0cb67
 
 
 
 
 
cf9f12d
4b0cb67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf9f12d
 
 
4b0cb67
 
 
 
 
 
 
 
 
47bf824
4b0cb67
 
cf9f12d
 
 
 
 
 
 
 
 
 
 
 
 
 
4b0cb67
 
 
 
 
 
 
 
32f9dec
4b0cb67
47bf824
4b0cb67
 
32f9dec
4b0cb67
 
 
 
 
 
 
 
 
 
 
 
 
32f9dec
4b0cb67
47bf824
4b0cb67
 
32f9dec
4b0cb67
 
47bf824
4b0cb67
 
 
 
 
 
 
 
 
 
32f9dec
4b0cb67
47bf824
4b0cb67
 
32f9dec
4b0cb67
 
47bf824
4b0cb67
 
 
 
 
 
cf9f12d
 
 
 
 
 
 
 
4b0cb67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf9f12d
4b0cb67
 
 
 
 
 
 
 
 
47bf824
 
4b0cb67
47bf824
4b0cb67
 
cf9f12d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b0cb67
 
 
 
 
 
 
 
 
 
 
cf9f12d
 
 
 
 
 
 
 
4b0cb67
 
 
 
32f9dec
4b0cb67
 
 
32f9dec
 
47bf824
32f9dec
 
 
 
 
 
 
47bf824
32f9dec
 
 
 
 
 
47bf824
32f9dec
47bf824
4b0cb67
 
cf9f12d
 
 
 
 
 
 
 
 
 
 
 
 
 
4b0cb67
 
32f9dec
4b0cb67
 
 
32f9dec
 
47bf824
32f9dec
 
 
 
 
 
 
47bf824
32f9dec
 
 
 
 
 
47bf824
32f9dec
47bf824
4b0cb67
 
cf9f12d
 
 
 
 
 
 
 
 
 
 
 
 
 
4b0cb67
 
32f9dec
4b0cb67
 
 
32f9dec
 
47bf824
32f9dec
 
 
 
 
 
 
47bf824
32f9dec
 
 
 
 
 
47bf824
32f9dec
47bf824
4b0cb67
 
 
 
 
 
cf9f12d
 
 
 
 
 
 
 
4b0cb67
 
 
 
 
 
 
 
 
 
 
 
 
 
cf9f12d
4b0cb67
cf9f12d
4b0cb67
cf9f12d
4b0cb67
 
 
 
 
 
cf9f12d
4b0cb67
 
 
 
 
 
cf9f12d
 
 
 
 
 
 
 
4b0cb67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47bf824
4b0cb67
 
 
 
 
 
cf9f12d
4b0cb67
cf9f12d
4b0cb67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47bf824
4b0cb67
 
cf9f12d
 
 
 
 
 
 
4b0cb67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf9f12d
 
 
4b0cb67
47bf824
4b0cb67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47bf824
 
 
 
 
 
 
4b0cb67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47bf824
4b0cb67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47bf824
4b0cb67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2061bc
4b0cb67
d2061bc
4b0cb67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47bf824
4b0cb67
 
 
 
 
 
 
 
47bf824
4b0cb67
 
 
 
 
 
 
 
47bf824
4b0cb67
a0fee34
 
 
 
 
 
 
 
 
 
 
4b0cb67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# 2.2 决策树"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "决策树是一种通过**树形结构**进行分类的方法,使用层层推理来实现最终的分类。\n",
    "\n",
    "决策树由下面几种元素构成:\n",
    "+ 根节点:最顶层的分类条件。\n",
    "+ 决策节点(中间节点):中间分类条件。\n",
    "+ 叶子节点:代表标签类别。\n",
    "\n",
    "<img src=\"http://imgbed.momodel.cn//20200110170450.png\" width=400>\n",
    "\n",
    "预测时,在树的内部节点处用某一属性值进行判断,根据判断结果决定进入哪个分支节点,\n",
    "\n",
    "直到到达叶节点处,得到分类结果。\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<br>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "上面的说法过于抽象,下面来看一个实际的例子。\n",
    "\n",
    "构建一棵结构简单的决策树,用于预测贷款用户是否具有偿还贷款的能力。\n",
    "\n",
    "贷款用户主要具备三个属性:**是否拥有房产**,**是否结婚**,**平均月收入**。\n",
    "\n",
    "每一个内部节点都表示一个属性条件判断,叶子节点表示贷款用户是否具有偿还能力。\n",
    "\n",
    "<img src=\"http://imgbed.momodel.cn//20200110171836.png\" width=400>\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "首先判断贷款用户是否拥有房产,\n",
    "如果用户拥有房产,则说明该用户具有偿还贷款的能力;\n",
    "否则需要判断该用户是否结婚,\n",
    "如果已经结婚则具有偿还贷款的能力;\n",
    "否则需要判断该用户的收入大小,\n",
    "如果该用户月收入小于 4K 元,\n",
    "则该用户不具有偿还贷款的能力,\n",
    "否则该用户是具有偿还能力的。\n",
    "\n",
    "现在有一个贷款用户A,其情况是月收入 3K、已经结婚、没有房产,那么他是否具有偿还贷款的能力呢?\n",
    "\n",
    "很显然,他是具有偿还贷款能力的。\n",
    "\n",
    "那么,上图中我们为什么要用“是否拥有房产”作根节点呢?可不可以用“是否结婚”和“平均月收入”做根节点呢?\n",
    "\n",
    "学完本章即可知道答案。"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<br>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 2.2.1 决策树分类概念"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<center><video src=\"http://files.momodel.cn/decision_tree_playground_demo.mp4\" controls=\"controls\" width=800px></center>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<br>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "**数据**: 游乐场经营者提供**天气情况**(如晴、雨、多云)、**温度高低**、**湿度大小**、**风力强弱**等气象特点以及游客当天是否前往游乐场。\n",
    "\n",
    "**目标**: 预测游客是否来游乐场游玩。\n",
    "\n",
    "\n",
    "|序号|天气|温度(℃)|湿度|是否有风|是(1)否(0)前往游乐场|\n",
    "|:--:|:--:|:--:|:--:|:--:|:--:|\n",
    "|1|晴|29|85|否|0|\n",
    "|2|晴|26|88|是|0|\n",
    "|3|多云|28|78|否|1\n",
    "|4|雨|21|96|否|1|\n",
    "|5|雨|20|80|否|1|\n",
    "|6|雨|18|70|是|0|\n",
    "|7|多云|18|65|是|1|\n",
    "|8|晴|22|90|否|0|\n",
    "|9|晴|21|68|否|1|\n",
    "|10|雨|24|80|否|1|\n",
    "|11|晴|24|63|是|1|\n",
    "|12|多云|22|90|是|1|\n",
    "|13|多云|27|75|否|1|\n",
    "|14|雨|21|80|是|0|\n",
    "\n",
    "根据上表,绘制如图所示的决策树:\n",
    "\n",
    "<img src=\"http://imgbed.momodel.cn//20200110172806.png\" width=500>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<br>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "根节点是天气状况,具有 **雨**、**多云** 和 **晴** 三种属性取值。\n",
    "+ **多云**:  样本子集是 { 3, 7, 12, 13 } ,仅有“前往游乐场游玩”一个类别,即肯定去游乐场。  \n",
    "  \n",
    "  \n",
    "+ **晴**:  样本子集是 { 1, 2, 8, 9, 11 }\n",
    "    + 湿度大于 75:样本子集为 { 1, 2, 8 },不前往游乐场。\n",
    "    + 湿度不大于 75:样本子集 { 9, 11 },前往游乐场。\n",
    "    \n",
    "    \n",
    "+ **雨**:样本子集为 { 4, 5, 6, 10, 14 }\n",
    "    + 有风:样本子集 { 6, 14 },不去游乐场。\n",
    "    + 无风:样本子集 { 4, 5, 10 },前往游乐场。\n",
    " "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "由上面的例子可以看到,构建决策树的过程就是:\n",
    "1. 选择一个属性值;\n",
    "2. 基于该属性对样本集进行划分;\n",
    "3. 重复步骤 1 和 2 直到最后所得划分结果中每个样本为同一类别。"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<br>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "下面,我们创建数据并进行一些预处理"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import numpy as np\n",
    "import pandas as pd\n",
    "import matplotlib.pyplot as plt\n",
    "%matplotlib inline\n",
    "import math\n",
    "from math import log\n",
    "import warnings\n",
    "warnings.filterwarnings(\"ignore\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# 原始数据\n",
    "datasets = [\n",
    "    ['晴', 29, 85, '否', '0'],\n",
    "    ['晴', 26, 88, '是', '0'],\n",
    "    ['多云', 28, 78, '否', '1'],\n",
    "    ['雨', 21, 96, '否', '1'],\n",
    "    ['雨', 20, 80, '否', '1'],\n",
    "    ['雨', 18, 70, '是', '0'],\n",
    "    ['多云', 18, 65, '是', '1'],\n",
    "    ['晴', 22, 90, '否', '0'],\n",
    "    ['晴', 21, 68, '否', '1'],\n",
    "    ['雨', 24, 80, '否', '1'],\n",
    "    ['晴', 24, 63, '是', '1'],\n",
    "    ['多云', 22, 90, '是', '1'],\n",
    "    ['多云', 27, 75, '否', '1'],\n",
    "    ['雨', 21, 80, '是', '0']\n",
    "]\n",
    "# 数据的列名\n",
    "labels = ['天气', '温度', '湿度', '是否有风', '是否前往游乐场']\n",
    "# 将湿度大小分为大于 75 和小于等于 75 这两个属性值,\n",
    "# 将温度大小分为大于 26 和小于等于 26 这两个属性值\n",
    "for i in range(len(datasets)):\n",
    "    if datasets[i][2] > 75:\n",
    "        datasets[i][2] = '>75'\n",
    "    else:\n",
    "        datasets[i][2] = '<=75'\n",
    "    if datasets[i][1] > 26:\n",
    "        datasets[i][1] = '>26'\n",
    "    else:\n",
    "        datasets[i][1] = '<=26'\n",
    "# 构建 dataframe 并查看数据\n",
    "df = pd.DataFrame(datasets, columns=labels)\n",
    "df"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<br>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 2.2.2 构建决策树  "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<center><video src=\"http://files.momodel.cn/decision_tree_entropy.mp4\" controls=\"controls\" width=800px></center>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "**信息增益**用来衡量样本集合复杂度(不确定性)所减少的程度。  \n",
    "\n",
    "**信息熵**用来度量信息量的大小。从信息论的角度来看,对信息的度量等于计算信息不确定性的多少。  "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "假设有 $K$ 个信息,其组成了集合样本 $D$ ,记第 $k$ 个信息发生的概率为 $p_k(1≤k≤K)$。  \n",
    "这 $K$ 个信息的信息熵:  \n",
    "$$E(D)=-\\sum_{k=1}^{K}p_k log_{2} p_k$$\n",
    "\n",
    "需要指出:**所有 $p_k$ 累加起来的和为1**。"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<br>"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "def calc_entropy(total_num, count_dict):\n",
    "    \"\"\"\n",
    "    计算信息熵\n",
    "    :param total_num: 总样本数\n",
    "    :param count_dict: 每类样本及其对应数目的字典\n",
    "    :return: 信息熵\n",
    "    \"\"\"\n",
    "    # 使用信息熵公式计算\n",
    "    ent = -sum([(p / total_num) * log(p / total_num, 2) for p in count_dict.values() if p != 0])\n",
    "    # 避免 print 显示异常\n",
    "    if not ent:\n",
    "        ent = 0\n",
    "    # 返回信息熵,精确到小数点后 3 位\n",
    "    return round(ent, 3)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "\n",
    "\n",
    "现在用**熵**来构建决策树。数据中 14 个样本分为 “游客来游乐场( 9 个样本)” 和 “游客不来游乐场( 5 个样本)” 两个类别,即 K = 2。\n",
    "\n",
    " “游客来游乐场”  “游客不来游乐场” 的概率分别为 $p_1$  $p_2$ ,显然 $p_1=\\frac{9}{14}$,$p_1=\\frac{5}{14}$ ,则这 14 个样本所蕴含的信息熵:\n",
    "\n",
    "$$E(D)=-\\sum_{k=1}^{2}p_{k}log_{2}{p_k}=-(\\frac{9}{14}×log_{2}{\\frac{9}{14}}+\\frac{5}{14}×log_{2}{\\frac{5}{14}})=0.940$$"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "我们可以用下面这种方式对 dataframe 的数据按条件进行筛选。"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# 例如:按 是否前往游乐场==0 进行筛选\n",
    "df[df['是否前往游乐场']=='0']\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "使用上面的方法,可以得到计算信息熵所需的总样本数,以及每类样本及其对应数目的字典,然后计算信息熵。"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# 总样本数\n",
    "total_num = df.shape[0]\n",
    "\n",
    "# 每类样本及其对应数目的字典\n",
    "count_dict = {'前往': df[df['是否前往游乐场']=='1'].shape[0], '不前往': df[df['是否前往游乐场']=='1'].shape[1]}\n",
    "\n",
    "# 计算信息熵\n",
    "entropy = calc_entropy(total_num, count_dict)\n",
    "entropy\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<br>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<center><video src=\"http://files.momodel.cn/decision_tree_build.mp4\" controls=\"controls\" width=800px></center>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<br>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "**计算天气状况所对应的信息熵**:  \n",
    "天气状况的三个属性记为 $a_0=“晴”$ ,$a_1=“多云”$ ,$a_2=“雨”$ ,  \n",
    "属性取值为 $a_i$ 对应分支节点所包含子样本集记为 $D_i$ ,该子样本集包含样本数量记为 $|D_i|$ 。"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "|天气属性取值$a_i$|“晴”|“多云”|“雨”|\n",
    "|:--:|:--:|:--:|:--:|\n",
    "|对应样本数$|D_i|$|5|4|5|\n",
    "|正负样本数量|(2+,3-)|(4+,0-)|(3+,2-)|\n",
    "\n",
    "计算天气状况每个属性值的信息熵:\n",
    "\n",
    "$“晴”:E(D_0)=-(\\frac{2}{5}×log_{2}{\\frac{2}{5}}+\\frac{3}{5}×log_{2}{\\frac{3}{5}})=0.971$\n",
    "\n",
    "$“多云”:E(D_1)=-(\\frac{4}{4}×log_{2}{\\frac{4}{4}})=0$\n",
    "\n",
    "$“雨”:E(D_2)=-(\\frac{3}{5}×log_{2}{\\frac{3}{5}}+\\frac{2}{5}×log_{2}{\\frac{2}{5}})=0.971$"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "现在,我们来编写代码进行完成上面的计算。\n",
    "\n",
    "首先,我们可以使用下面的写法,对 Dataframe 进行多个条件的筛选。"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# 筛选出 天气为晴并且去游乐场的样本数据\n",
    "df[(df['天气']=='晴') & (df['是否前往游乐场']=='1')]\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<br>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "然后,我们是使用上面的筛选方法,分别计算不同天气下的信息熵。"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# 天气为晴的总天数\n",
    "total_num_sun = df[df['天气']=='晴'].shape[0]\n",
    "\n",
    "# 天气为晴时,去游乐场和不去游乐场的人数\n",
    "count_dict_sun = {'前往':df[(df['天气']=='晴') & (df['是否前往游乐场']=='1')].shape[0],\n",
    "              '不前往':df[(df['天气']=='晴') & (df['是否前往游乐场']=='0')].shape[0]}\n",
    "print(count_dict_sun)\n",
    "\n",
    "# 计算天气-晴 的信息熵\n",
    "ent_sun = calc_entropy(total_num_sun, count_dict_sun)\n",
    "print('天气-晴 的信息熵为:%s' % ent_sun)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# 天气为多云的总天数\n",
    "total_num_cloud = df[df['天气']=='多云'].shape[0]\n",
    "\n",
    "# 天气为多云时,去游乐场和不去游乐场的人数\n",
    "count_dict_cloud = {'前往':df[(df['天气']=='多云') & (df['是否前往游乐场']=='1')].shape[0],\n",
    "              '不前往':df[(df['天气']=='多云') & (df['是否前往游乐场']=='0')].shape[0]}\n",
    "print(count_dict_cloud)\n",
    "\n",
    "# 计算天气-多云 的信息熵\n",
    "ent_cloud = calc_entropy(total_num_cloud, count_dict_cloud)\n",
    "print('天气-多云 的信息熵为:%s' % ent_cloud)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# 天气为雨的总天数\n",
    "total_num_rain = df[df['天气']=='雨'].shape[0]\n",
    "\n",
    "# 天气为雨时,去游乐场和不去游乐场的人数\n",
    "count_dict_rain = {'前往':df[(df['天气']=='雨') & (df['是否前往游乐场']=='1')].shape[0],\n",
    "              '不前往':df[(df['天气']=='雨') & (df['是否前往游乐场']=='0')].shape[0]}\n",
    "print(count_dict_rain)\n",
    "\n",
    "# 计算天气-雨 的信息熵\n",
    "ent_rain = calc_entropy(total_num_rain, count_dict_rain)\n",
    "print('天气-雨 的信息熵为:%s' % ent_rain)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<br>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "得到不同天气下的信息熵后,我们可以计算天气状况的信息增益:  \n",
    "$$Gain(D,A)=E(D)-\\sum_{i}^{n}\\frac{|D_i|}{D}E(D)$$"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "其中,$A=“天气状况”$。于是天气状况这一气象特点的信息增益为:\n",
    "$$Gain(D,天气)=0.940-(\\frac{5}{14}×0.971+\\frac{4}{14}×0+\\frac{5}{14}×0.971=0.246$$\n",
    "\n",
    "同理可以计算温度高低、湿度大小、风力强弱三个气象特点的信息增益。  \n",
    "通常情况下,某个分支的信息增益越大,则该分支对样本集划分所获得的“纯度”越大,信息不确定性减少的程度越大。"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "我们来编写代码,使用上面的公式计算信息增益。"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# 信息增益\n",
    "gain = entropy - (total_num_sun/total_num*ent_sun +\n",
    "                  total_num_cloud/total_num*ent_cloud +\n",
    "                  total_num_rain/total_num*ent_rain)\n",
    "gain\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<br>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 扩展内容\n",
    "\n",
    "**基尼指数**\n",
    "\n",
    "除了使用信息增益以外,我们也可以使用基尼指数来构建决策树。\n",
    "\n",
    "分类问题中,假设有 $K$ 个类,样本点属于第 $k$ 类的概率为 $p_{k}$,则概率分布的基尼指数定义为:\n",
    "\n",
    "$$\\operatorname{Gini}(p)=\\sum_{k=1}^{K} p_{k}\\left(1-p_{k}\\right)=1-\\sum_{k=1}^{K} p_{k}^{2}$$\n",
    "\n",
    "\n",
    "对于给定的样本集合 $D$,其基尼指数为\n",
    "\n",
    "$$\\operatorname{Gini}(D)=1-\\sum_{k=1}^{K}\\left(\\frac{\\left|C_{k}\\right|}{|D|}\\right)^{2}$$\n",
    "\n",
    "这里,$C_{k}$  $D$ 中属于第 $k$ 类的样本子集,$K$ 是类的个数。\n",
    "\n",
    "如果样本集合 $D$ 根据特征 $A$ 是否取某一可能值 $a$ 被分割为 $D_{1}$   $D_{2}$ 两部分,即\n",
    "\n",
    "$$D_{1}=\\{(x, y) \\in D | A(x)=a\\}, \\quad D_{2}=D-D_{1}$$\n",
    "\n",
    "则在特征 $A$ 的条件下,集合 $D$ 的基尼指数定义为\n",
    "\n",
    "$$\\operatorname{Gini}(D, A)=\\frac{\\left|D_{1}\\right|}{|D|}\n",
    "\\operatorname{Gini}\\left(D_{1}\\right)+\\frac{\\left|D_{2}\\right|}{|D|} \\operatorname{Gini}\\left(D_{2}\\right)$$\n",
    "\n",
    "基尼指数 $Gini(D)$ 表示集合 $D$ 的不确定性,基尼指数 $Gini(D, A)$ 表示经过分割后集合 $D$ 的不确定性。基尼指数值越大,样本集合的不确定性也就越大,这一点与信息熵相似。"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "**想一想**:"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "对于二分类问题,若样本点属于第 1 个类的概率是 $p$,则概率分布的基尼指数是多少?\n",
    "\n",
    "$$\\text { Gini }(p)=2 p(1-p)$$"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<br>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 思考与练习    "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "1. 在上面的游客去往游乐场的例子中,分别将温度高低、湿度大小、风力强弱作为分支点来构建决策树,查看信息增益。\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "计算按温度高低进行切分的信息增益。"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# 温度 >26 的信息熵\n",
    "total_num_temp_high = df[df['温度']=='>26'].shape[0]\n",
    "count_dict_temp_high = {'前往':df[(df['温度']=='>26') & (df['是否前往游乐场']=='1')].shape[0],\n",
    "                   '不前往':df[(df['温度']=='>26') & (df['是否前往游乐场']=='0')].shape[0]}\n",
    "print(count_dict_temp_high)\n",
    "ent_temp_high = calc_entropy(total_num_temp_high, count_dict_temp_high)\n",
    "print('温度 >26 的信息熵为:%s' % ent_temp_high)\n",
    "\n",
    "# 温度 <=26 的信息熵\n",
    "total_num_temp_low = df[df['温度']=='<=26'].shape[0]\n",
    "count_dict_temp_low = {'前往':df[(df['温度']=='<=26') & (df['是否前往游乐场']=='1')].shape[0],\n",
    "                     '不前往':df[(df['温度']=='<=26') & (df['是否前往游乐场']=='0')].shape[0]}\n",
    "print(count_dict_temp_low)\n",
    "ent_temp_low = calc_entropy(total_num_temp_low, count_dict_temp_low)\n",
    "print('温度 <=26 的信息熵为:%s' % ent_temp_low)\n",
    "\n",
    "# 如果按照温度高低进行划分,则对应的信息增益为\n",
    "gain = entropy - (total_num_temp_high/total_num*ent_temp_high +\n",
    "                  total_num_temp_low/total_num*ent_temp_low)\n",
    "print('按照温度高低进行划分的信息增益为:%s' % gain)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<br>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "计算按湿度高低进行切分的信息增益。"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# 湿度 >75 的信息熵\n",
    "total_num_hum_high = df[df['湿度']=='>75'].shape[0]\n",
    "count_dict_hum_high = {'前往':df[(df['湿度']=='>75') & (df['是否前往游乐场']=='1')].shape[0],\n",
    "                   '不前往':df[(df['湿度']=='>75') & (df['是否前往游乐场']=='0')].shape[0]}\n",
    "print(count_dict_hum_high)\n",
    "ent_hum_high = calc_entropy(total_num_hum_high, count_dict_hum_high)\n",
    "print('湿度 >75 的信息熵为:%s' % ent_hum_high)\n",
    "\n",
    "# 湿度 <=75 的信息熵\n",
    "total_num_hum_low = df[df['湿度']=='<=75'].shape[0]\n",
    "count_dict_hum_low = {'前往':df[(df['湿度']=='<=75') & (df['是否前往游乐场']=='1')].shape[0],\n",
    "                     '不前往':df[(df['湿度']=='<=75') & (df['是否前往游乐场']=='0')].shape[0]}\n",
    "print(count_dict_hum_low)\n",
    "ent_hum_low = calc_entropy(total_num_hum_low, count_dict_hum_low)\n",
    "print('湿度 <=75 的信息熵为:%s' % ent_hum_low)\n",
    "\n",
    "# 如果按照湿度高低进行划分,则对应的信息增益为\n",
    "gain = entropy - (total_num_hum_high/total_num*ent_hum_high +\n",
    "                  total_num_hum_low/total_num*ent_hum_low)\n",
    "print('按照湿度高低进行划分的信息增益为:%s' % gain)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<br>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "计算按风力强弱进行切分的信息增益。"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# 有风 的信息熵\n",
    "total_num_wind = df[df['是否有风']=='是'].shape[0]\n",
    "count_dict_wind = {'前往':df[(df['是否有风']=='是') & (df['是否前往游乐场']=='1')].shape[0],\n",
    "              '不前往':df[(df['是否有风']=='是') & (df['是否前往游乐场']=='0')].shape[0]}\n",
    "print(count_dict_wind)\n",
    "ent_wind = calc_entropy(total_num_wind, count_dict_wind)\n",
    "print('有风 的信息熵为:%s' % ent_wind)\n",
    "\n",
    "# 无风 的信息熵\n",
    "total_num_nowind = df[df['是否有风']=='否'].shape[0]\n",
    "count_dict_nowind = {'前往':df[(df['是否有风']=='否') & (df['是否前往游乐场']=='1')].shape[0],\n",
    "              '不前往':df[(df['是否有风']=='否') & (df['是否前往游乐场']=='0')].shape[0]}\n",
    "print(count_dict_nowind)\n",
    "ent_nowind = calc_entropy(total_num_nowind, count_dict_nowind)\n",
    "print('无风 的信息熵为:%s' % ent_nowind)\n",
    "\n",
    "# 如果按照是否有风进行划分,则对应的信息增益为\n",
    "gain = entropy - (total_num_wind/total_num*ent_wind +\n",
    "                  total_num_nowind/total_num*ent_nowind)\n",
    "print('按照是否有风进行划分的信息增益为:%s' % gain)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<br>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "2. 每朵鸢尾花有**萼片长度**、**萼片宽度**、**花瓣长度**、**花瓣宽度**四个特征。现在需要根据这四个特征将鸢尾花分为**杂色鸢尾花**、**维吉尼亚鸢尾**和**山鸢尾**三类,试构造决策树进行分类。\n",
    "\n",
    "|序号|萼片长度|萼片宽度|花瓣长度|花瓣宽度|种类|\n",
    "|:--:|:--:|:--:|:--:|:--:|:--:|\n",
    "|1|5.0|2.0|3.5|1.0|杂色鸢尾|\n",
    "|2|6.0|2.2|5.0|1.5|维吉尼亚鸢尾|\n",
    "|3|6.0|2.2|4.0|1.0|杂色鸢尾|\n",
    "|4|6.2|2.2|4.5|1.5|杂色鸢尾|\n",
    "|5|4.5|2.3|1.3|0.3|山鸢尾|"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "观察上表中的五笔数据,我们可以看到 **杂色鸢尾** 和 **维吉尼亚鸢尾** 的花瓣宽度明显大于 **山鸢尾**,所以可以通过判断花瓣宽度是否大于 0.7,来将 **山鸢尾** 从其他两种鸢尾中区分出来。\n",
    "\n",
    "同时,**杂色鸢尾** 和 **维吉尼亚鸢尾** 的花瓣长度明显大于 **山鸢尾**,所以也可以通过判断花瓣长度是否大于 2.4,来将 **山鸢尾 **从其他两种鸢尾中区分出来。\n",
    "\n",
    "然后我们观察到 **维吉尼亚鸢尾** 的花瓣长度明显大于 **杂色鸢尾**,所以可以通过判断花瓣长度是否大于 4.75,来将 **杂色鸢尾** 和 **维吉尼亚鸢尾**区分出来。"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "实际上是否如此呢?你能否想到其他的切分方式?"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<br>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "上面的表格只是 Iris 数据集的一小部分,完整的数据集包含 150 个数据样本,分为 3 类,每类 50 个数据,每个数据包含 4 个属性。即**花萼长度**,**花萼宽度**,**花瓣长度**,**花瓣宽度**4个属性。\n",
    "\n",
    "我们使用 sklearn 工具包来构建决策树模型,先导入数据集。"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from sklearn.datasets import load_iris\n",
    "# 加载数据集\n",
    "iris = load_iris()\n",
    "# 查看 label\n",
    "print(list(iris.target_names))\n",
    "# 查看 feature\n",
    "print(iris.feature_names)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "setosa 是**山鸢尾**,versicolor是**杂色鸢尾**,virginica是**维吉尼亚鸢尾**。\n",
    "\n",
    "sepal length, sepal width,petal length,petal width 分别是**萼片长度**,**萼片宽度**,**花瓣长度**,**花瓣宽度**。"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "然后进行训练集和测试集的切分。"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from sklearn.model_selection import train_test_split\n",
    "# 载入数据\n",
    "X, y = load_iris(return_X_y=True)\n",
    "# 切分训练集合测试集\n",
    "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<br>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "接下来,我们在训练集数据上训练决策树模型。"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from sklearn import tree\n",
    "from sklearn.tree import DecisionTreeClassifier\n",
    "# 初始化模型,可以调整 max_depth 来观察模型的表现, \n",
    "# 也可以调整 criterion  为 gini 来使用 gini 指数构建决策树\n",
    "clf = tree.DecisionTreeClassifier(criterion='entropy', max_depth=2)\n",
    "# 训练模型\n",
    "clf = clf.fit(X_train, y_train)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "我们可以使用 graphviz 包来展示构建好的决策树。"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import graphviz\n",
    "feature_names = ['萼片长度','萼片宽度','花瓣长度','花瓣宽度']\n",
    "target_names = ['山鸢尾', '杂色鸢尾', '维吉尼亚鸢尾']\n",
    "# 可视化生成的决策树\n",
    "dot_data = tree.export_graphviz(clf, out_file=None,\n",
    "                     feature_names=feature_names,\n",
    "                     class_names=target_names,\n",
    "                     filled=True, rounded=True,\n",
    "                     special_characters=True)\n",
    "graph = graphviz.Source(dot_data)\n",
    "graph\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "我们看模型在测试集上的表现"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from sklearn.metrics import accuracy_score\n",
    "y_test_predict = clf.predict(X_test)\n",
    "accuracy_score(y_test,y_test_predict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 实践与体验\n",
    "\n",
    "**计算文章的信息熵**\n",
    "\n",
    "收集中英文对照的短文,在计算短文内中文单词和英文单词出现概率基础上,计算该两篇短文的信息熵,比较中文短文信息熵和英文短文信息熵的大小。"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "首先定义一个方法来辅助读取文件的内容。"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "def read_file(path):\n",
    "    \"\"\"\n",
    "    读取某文件的内容\n",
    "    :param path: 文件的路径\n",
    "    :return: 文件的内容\n",
    "    \"\"\"\n",
    "    contents = \"\"\n",
    "    with open(path) as f:\n",
    "        # 读取每一行的内容\n",
    "        for line in f.readlines():\n",
    "            contents += line\n",
    "    return contents\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "使用上面定义的方法读取英文短文及其对应的中文短文。"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# 读取英文短文\n",
    "en_essay = read_file('essay1_en.txt')\n",
    "# 读取中文短文\n",
    "ch_essay = read_file('essay1_ch.txt')\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "处理文本,统计单词出现的概率,并计算信息熵。"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from collections import Counter\n",
    "import re\n",
    "\n",
    "\n",
    "def cal_essay_entropy(essay, split_by=None):\n",
    "    \"\"\"\n",
    "    计算文章的信息熵\n",
    "    :param essay: 文章内容\n",
    "    :param split_by: 切分方式,对于中文文章,不需传入,按字符切分,\n",
    "                     对于英文文章,需传入空格字符来进行切分\n",
    "    :return: 文章的信息熵\n",
    "    \"\"\"\n",
    "    # 把英文全部转为小写\n",
    "    essay = essay.lower()\n",
    "    # 去除标点符号\n",
    "    essay = re.sub(\n",
    "        \"[\\f+\\n+\\r+\\t+\\v+\\?\\.\\!\\/_,$%^*(+\\\"\\']+|[+——!,。?、~@#《》¥%……&*()]\", \"\",\n",
    "        essay)\n",
    "    # print(essay)\n",
    "    # 把文本分割为词\n",
    "    if split_by:\n",
    "        word_list = essay.split(split_by)\n",
    "    else:\n",
    "        word_list = list(essay)\n",
    "    # 统计总的单词数\n",
    "    word_number = len(word_list)\n",
    "    print('此文章共有 %s 个单词' % word_number)\n",
    "    # 得到每个单词出现的次数\n",
    "    word_counter = Counter(word_list)\n",
    "    # print('每个单词出现的次数为:%s' % word_counter)\n",
    "    # 使用信息熵公式计算信息熵\n",
    "    ent = -sum([(p / word_number) * log(p / word_number, 2) for p in\n",
    "                word_counter.values()])\n",
    "    print('信息熵为:%.2f' % ent)\n",
    "    return ent\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "ent = cal_essay_entropy(ch_essay)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "ent = cal_essay_entropy(en_essay, split_by = ' ')\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 扩展阅读\n",
    "\n",
    "1. [决策树与随机森林](https://www.bilibili.com/video/av26086646?from=search&seid=6716049859412037731)\n",
    "2. [从决策树到随机森林:树型算法的原理与实现](https://www.jiqizhixin.com/articles/2017-07-31-3)\n",
    "3. [sklearn 决策树](https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.5.2"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}