master
/ 02.04 贝叶斯分析(学生版).ipynb

02.04 贝叶斯分析(学生版).ipynb @master

4b0cb67
 
 
 
 
 
cf9f12d
 
 
 
 
 
 
4b0cb67
 
 
 
 
 
 
cf9f12d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b0cb67
cf9f12d
4b0cb67
 
 
cf9f12d
 
 
 
 
 
 
 
4b0cb67
 
 
 
 
 
 
 
 
 
 
 
 
cf9f12d
 
 
 
 
 
 
 
4b0cb67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dea265f
 
 
 
 
 
cf9f12d
dea265f
cf9f12d
dea265f
 
 
 
 
 
 
 
cf9f12d
 
 
 
 
 
 
dea265f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf9f12d
dea265f
 
4b0cb67
 
 
 
cf9f12d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b0cb67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf9f12d
 
 
4b0cb67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf9f12d
 
 
 
 
 
 
4b0cb67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b6535e
 
 
4b0cb67
 
 
 
32f9dec
 
4b0cb67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf9f12d
 
 
 
 
 
 
4b0cb67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf9f12d
 
 
 
 
 
 
4b0cb67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32f9dec
4b0cb67
 
 
 
 
 
32f9dec
4b0cb67
a0fee34
 
 
 
 
 
 
 
 
 
4b0cb67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# 2.4 贝叶斯分析"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "贝叶斯分析是一种根据概率统计知识对数据进行分析的方法,属于统计学分类的范畴。"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 2.4.1 贝叶斯公式"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<center><video src=\"http://files.momodel.cn/bayes_theorem.mp4\" controls=\"controls\" width=800px></center>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<br>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "**想一想**"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "频率学派 和 贝叶斯学派各自的主张是什么?\n",
    "\n",
    "**贝叶斯公式**:\n",
    "\n",
    "$$P(A|B) = \\frac{P(B|A)P(A)}{P(B)}$$\n",
    "\n",
    "中的各项分别代表什么意思?  "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 2.4.2 贝叶斯推断"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "贝叶斯推断是一种基于贝叶斯公式进行分析的统计学方法。"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<center><video src=\"http://files.momodel.cn/bayes_inference.mp4\" controls=\"controls\" width=800px></center>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### 根据邮件中的 “红包” 字样判别该邮件是不是垃圾邮件\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# 广告邮件的数量 \n",
    "ad_number = 4000\n",
    "# 正常邮件的数量\n",
    "normal_number = 6000\n",
    "\n",
    "# 所有广告邮件中,出现 “红包” 关键词的邮件的数量\n",
    "ad_hongbao_number = 1000\n",
    "# 所有正常邮件中,出现 “红包” 关键词的邮件的数量\n",
    "normal_hongbao_number = 6\n",
    "\n",
    "# 用户收到广告邮件的先验概率为\n",
    "P_ad = ad_number / (ad_number + normal_number)\n",
    "print(\"用户收到广告邮件的先验概率为 \" + str(P_ad))\n",
    "\n",
    "# 用户收到正常邮件的先验概率为\n",
    "P_normal = normal_number / (ad_number + normal_number)\n",
    "print(\"用户收到正常邮件的先验概率为 \" + str(P_normal))\n",
    "\n",
    "# 红包出现的概率\n",
    "P_hongbao = (normal_hongbao_number + ad_hongbao_number) / (\n",
    "            ad_number + normal_number)\n",
    "print(\"邮件包含红包的先验概率为 \" + str(P_hongbao))\n",
    "\n",
    "# 广告邮件中出现 “红包” 关键词的条件概率\n",
    "P_hongbao_ad = ad_hongbao_number / ad_number\n",
    "print(\"广告邮件中出现 “红包” 关键词的条件概率为 \" + str(P_hongbao_ad))\n",
    "\n",
    "# 正确邮件中出现 “红包” 关键词的条件概率\n",
    "P_hongbao_normal = normal_hongbao_number / normal_number\n",
    "print(\"正常邮件中出现 “红包” 关键词的条件概率为 \" + str(P_hongbao_normal))\n",
    "\n",
    "# 根据贝叶斯定理可得\n",
    "# 当邮件中出现 “红包” ,其为广告邮件的后验概率\n",
    "P_ad_hongbao = P_ad * P_hongbao_ad / P_hongbao\n",
    "print(\"当邮件中出现 “红包” ,其为广告邮件的后验概率为 \" + str(P_ad_hongbao))\n",
    "\n",
    "# 当邮件中出现 “红包” ,其为正常邮件的后验概率\n",
    "P_normal_hongbao = P_normal * P_hongbao_normal / P_hongbao\n",
    "print(\"当邮件中出现 “红包” ,其为正常邮件的后验概率为 \" + str(P_normal_hongbao))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 扩展内容\n",
    "\n",
    "#### 化验结果为阳性就代表你真的患病了吗?\n",
    "\n",
    "某同学 A 身体不舒服,去医院作了验血检查,看他是否得了 X 疾病,检查结果居然为阳性,他吓了一跳,赶紧上网查询。他看到网上有资料说,实验总是有误差的,这种实验有“百分之一的假阳性率和百分之一的假阴性率”。也就是说,在确实得了 X 疾病的人里面, 会有 1% 的人是假阴性,99%的人是真阳性, 也就是会有 1% 的几率被误诊为没病。而没得病的人去做检查,有 1% 的人是假阳性,99% 的人是真阴性,也就是会有 1% 的几率被误诊为有病。 于是,他认为,既然误检的概率这么低,那么他确实患病的概率应该是非常高的。\n",
    "\n",
    "可是,医生却告诉他,他被感染的概率只有 0.09 左右。这是怎么回事呢?\n",
    "\n",
    "医生说:“不用害怕。99% 是测试的准确性,不是你得病的概率。你忘了考虑一件事:这种疾病的患病比例是很小的,1000个人中只有一个人有这种病。”\n",
    "\n",
    "医生的计算方法是这样的:因为测试的误报率是 1%,1000个人将有 10 个被报为“假阳性”,而根据 X 病在人口中的比例(1/1000=0.1%),也就是说 1000 个人里真阳性只有1个。所以,大约 11 个测试为阳性的人中才有一个是真阳性(有病)的人,因此,同学被感染的几率是大约1/11,即0.09(9%)。"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "**动手练**"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "$A$ : 普通人患 X 病\n",
    "\n",
    "$B$ : 化验结果为阳性\n",
    "\n",
    "$P(A)$ 普通人患 X 的病概率 1/1000\n",
    "\n",
    "$P(B)$ 化验结果为阳性的总可能性 \n",
    "\n",
    "$P(A|B)$:检测结果为阳性时,一个人患 X 病的概率\n",
    "\n",
    "$P(B|A)$:一个人患 X 病,其检测结果为阳性的概率, 99%\n",
    "\n",
    "根据**贝叶斯公式**,计算 $P(A|B)$\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 2.4.3 朴素贝叶斯分类器  "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<center><video src=\"http://files.momodel.cn/bayes_naive.mp4\" controls=\"controls\" width=800px></center>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "**想一想**"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "朴素贝叶斯分类器做为一种常用的分类算法,其基本假设是什么?"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### 根据某同学的订单记录,判断其是否会对某店铺下单"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "**数据**:该同学的下单记录如下\n",
    "\n",
    "|店铺价位|店铺口味|店铺距离|是否下单|\n",
    "|:--:|:--:|:--:|:--:|\n",
    "|高|偏甜|近|是|\n",
    "|高|清淡|近|否|\n",
    "|高|偏辣|远|否|\n",
    "|高|偏甜|远|否|\n",
    "|低|偏甜|近|是|\n",
    "|低|偏甜|近|是|\n",
    "|低|清淡|远|否|\n",
    "|低|偏辣|远|是|\n",
    "\n",
    "**目标**:根据某同学的订单记录,如果向他推荐一家“价位低、口味偏甜、距离远”的店铺,判断他会下单吗?"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "该同学在收到8次推荐后,下单4次和没有下单4次,则其“下单”,“不下单”的概率:  \n",
    "$$P(下单) = \\frac{4}{8}=0.5$$  \n",
    "$$P(不下单) = \\frac{4}{8}=0.5$$"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "该同学对 “价位低、口味偏甜、距离远” 这次推荐的 “下单”  “不下单” 的似然概率为(注意基本假设是店铺价位、口味、距离这些特质中间互相独立,互不影响):\n",
    "\n",
    "$$\n",
    "\\begin{align}\n",
    "&P(价位=低,口味=偏甜,距离=远|下单)\\\\\n",
    "=&P(价位=低|下单)×P(口味=偏甜|下单)×P(距离=远|下单)\\\\\n",
    "=&\\frac{3}{4}×\\frac{3}{4}×\\frac{1}{4}\\\\\n",
    " & 0.141\n",
    "& \\\\\n",
    "& \\\\\n",
    "& P(价位=低,口味=偏甜,距离=远|不下单)\\\\\n",
    "=&P(价位=低|不下单)×P(口味=偏甜|不下单)×P(距离=远|不下单)\\\\\n",
    "=&\\frac{1}{4}×\\frac{1}{4}×\\frac{3}{4}\\\\\n",
    " &0.047\n",
    "\\end{align}\n",
    "$$\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "根据贝叶斯公式,可以得到该同学在一家“价格低、口味偏甜、距离远”的店铺,\n",
    "\n",
    "下单的后验概率为:\n",
    "\n",
    "$$\n",
    "\\begin{align}\n",
    "&P(下单|价位=低,口味=偏甜,距离=远)\\\\\n",
    "=&P(下单)×P(价位=低,口味=偏甜,距离=远|下单)\\\\\n",
    "=&0.5×0.141\\\\\n",
    "= &0.0705\n",
    "\\end{align}\n",
    "$$\n",
    "\n",
    "不下单的后验概率为:\n",
    "$$\n",
    "\\begin{align}\n",
    "&P(不下单|价位=低,口味=偏甜,距离=远)\\\\\n",
    "=&P(不下单)×P(价位=低,口味=偏甜,距离=远|不下单)\\\\\n",
    "=&0.5×0.047\\\\\n",
    "=&0.0235\n",
    "\\end{align}\n",
    "$$\n",
    "\n",
    "\n",
    "由此可见,该同学这次会下单的概率大于不下单的概率。\n",
    "\n",
    "上面的计算过程进行了一些简化,本来应该计算如下两个公式:\n",
    "\n",
    "$$\n",
    "\\begin{align}\n",
    "&P(下单|价位=低,口味=偏甜,距离=远)\\\\\n",
    "=&\\frac{P(下单)×P(价位=低,口味=偏甜,距离=远|下单)}{P(价位=低,口味=偏甜,距离=远)}\\\\\n",
    "\\end{align}\n",
    "$$\n",
    "\n",
    "$$\n",
    "\\begin{align}\n",
    "&P(不下单|价位=低,口味=偏甜,距离=远)\\\\\n",
    "=&\\frac{P(不下单)×P(价位=低,口味=偏甜,距离=远|不下单)}{P(价位=低,口味=偏甜,距离=远)}\\\\\n",
    "\\end{align}\n",
    "$$\n",
    "\n",
    "上述两个计算公式分母相同,对计算结果不影响,因此就从计算过程中略去了。"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<br>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 实践与体验"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### 利用朴素贝叶斯分类器解决 MNIST 手写体数字识别问题\n",
    "\n",
    "**MNIST** 是一个手写体数据集,它包含了各种各样的手写体数字图像及其对应的数字标签。其中每幅手写体图像的大小为 **28×28** ,共有 **784** 个像素点,可记为一个 **784** 维的向量,每个 **784** 维向量对应着一个标签。"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "本次实验我们利用 **tensorflow** 库来来进行原始数据集的解析和读取,利用 **sklearn** 库来进行特征提取和分类。更多内容可参考**tensorflow** [数据集部分](https://www.tensorflow.org/datasets/),sklearn  [bayes部分](https://scikit-learn.org/stable/modules/naive_bayes.html)。\n",
    "  \n",
    "1. **Python** 中导入相应库。"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "!mkdir -p ~/.keras/datasets\n",
    "!cp ./mnist.npz ~/.keras/datasets/mnist.npz\n",
    "\n",
    "import warnings\n",
    "warnings.filterwarnings(\"ignore\")\n",
    "import numpy as np\n",
    "from tensorflow.keras.datasets import mnist\n",
    "from sklearn.naive_bayes import BernoulliNB\n",
    "import matplotlib.pyplot as plt"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "2.读取 **MNIST** 训练集和测试集。"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "print(\"读取数据中 ...\")\n",
    "(train_images, train_labels), (test_images, test_labels) = mnist.load_data()\n",
    "train_images = train_images.reshape(train_images.shape[0], 784)\n",
    "test_images = test_images.reshape(test_images.shape[0], 784)\n",
    "print('读取完毕!')\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "我们使用下面的方法来查看其中几张图片。"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "def plot_images(imgs):\n",
    "    \"\"\"绘制几个样本图片\n",
    "    :param show: 是否显示绘图\n",
    "    :return:\n",
    "    \"\"\"\n",
    "    sample_num = min(9, len(imgs))\n",
    "    img_figure = plt.figure(1)\n",
    "    img_figure.set_figwidth(5)\n",
    "    img_figure.set_figheight(5)\n",
    "    for index in range(0, sample_num):\n",
    "        ax = plt.subplot(3, 3, index + 1)\n",
    "        ax.imshow(imgs[index].reshape(28, 28), cmap='gray')\n",
    "        ax.grid(False)\n",
    "    plt.margins(0, 0)\n",
    "    plt.show()\n",
    "\n",
    "\n",
    "plot_images(train_images)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<br>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "3.根据 **MNIST** 训练集训练朴素贝叶斯分类器"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "print(\"初始化并训练贝叶斯模型...\")\n",
    "classifier_BNB = BernoulliNB()\n",
    "classifier_BNB.fit(train_images,train_labels)\n",
    "print('训练完成!')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "4.根据训练出的分类器对 **MNIST** 测试集中的图片进行识别,得到预测值。\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "print(\"测试训练好的贝叶斯模型...\")\n",
    "test_predict_BNB = classifier_BNB.predict(test_images)\n",
    "print(\"测试完成!\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "5.将测试图片的预测值与实际值相比较,计算并输出分类器的正确率。"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "accuracy = sum(test_predict_BNB==test_labels)/len(test_labels)\n",
    "print('贝叶斯分类模型在测试集上的准确率为 :',accuracy)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "6.对实验结果进行分析比较,列出 **0-9** 不同数字识别的准确率,比较其差异。"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# 记录每个类别的样本的个数,例如 {0:100} 即 数字为 0 的图片有 100 张 \n",
    "class_num = {}\n",
    "# 每个类别预测为 0-9 类别的个数,\n",
    "predict_num = []\n",
    "# 每个类别预测的准确率\n",
    "class_accuracy = {}\n",
    "\n",
    "for i in range(10):\n",
    "    # 找到类别是 i 的下标\n",
    "    class_is_i_index = np.where(test_labels == i)[0]\n",
    "    # 统计类别是 i 的个数\n",
    "    class_num[i] = len(class_is_i_index)\n",
    "\n",
    "    # 统计类别 i 预测为 0-9 各个类别的个数\n",
    "    predict_num.append(\n",
    "        [sum(test_predict_BNB[class_is_i_index] == e) for e in range(10)])\n",
    "\n",
    "    # 统计类别 i 预测的准确率\n",
    "    class_accuracy[i] = round(predict_num[i][i] / class_num[i], 3) * 100\n",
    "\n",
    "    print(\"数字 %s 的样本个数:%4s,预测正确的个数:%4s,准确率:%.4s%%\" % (\n",
    "    i, class_num[i], predict_num[i][i], class_accuracy[i]))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<br>"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import numpy as np\n",
    "import seaborn as sns\n",
    "import matplotlib.pyplot as plt\n",
    "\n",
    "sns.set(rc={'figure.figsize': (12, 8)})\n",
    "np.random.seed(0)\n",
    "uniform_data = predict_num\n",
    "ax = sns.heatmap(uniform_data, cmap='YlGnBu', vmin=0, vmax=150)\n",
    "ax.set_xlabel('真实值')\n",
    "ax.set_ylabel('预测值')\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "通过热力图,我们看到 3 经常被错认为 5 和 8, 4 和 9 经常互相错认。"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "我们看看真实标签为 9,但是预测为 4 的错认的照片\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "def get_imgs(images, true_labels, predict_labels, true_label,\n",
    "             predict_label):\n",
    "    \"\"\"\n",
    "    从全部图片中按真实标签和预测标签筛选出图片\n",
    "    :param images: 一组图片\n",
    "    :param true_labels: 每张图片的标签\n",
    "    :param predict_labels: 模型预测的每张图片的标签\n",
    "    :param true_label: 希望取得的图片的真实标签\n",
    "    :param predict_label: 希望取得的图片的预测标签\n",
    "    :return: \n",
    "    \"\"\"\n",
    "    # 所有类别为 true_label 的样本的 index 值\n",
    "    true_label_index = set(np.where(true_labels == true_label)[0])\n",
    "    # 所有预测类别为 predict_label 的样本的 index 值\n",
    "    predict_label_index = set(np.where(predict_labels == predict_label)[0])\n",
    "    # 取交集,即为真实类别为 true_label, 预测结果为 predict_label 的样本的 index 值\n",
    "    res = list(true_label_index & predict_label_index)\n",
    "    return images[res]\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "imgs = get_imgs(test_images, test_labels, test_predict_BNB, 9, 4)\n",
    "plot_images(imgs)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "**问题 1**:你在上面的试验中观察到了什么?在下方列出模型对 0-9 不同数字识别的准确率,并比较其差异。"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "**答案 1**:(在此处填写你的答案。)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 扩展阅读\n",
    "1. [一文读懂概率论学习:贝叶斯理论](https://www.jiqizhixin.com/articles/2019-11-21)\n",
    "2. [朴素贝叶斯法讲解](https://www.bilibili.com/video/av57126177?from=search&seid=1588787263892359481)\n",
    "3. [sklearn 贝叶斯方法](https://scikit-learn.org/stable/modules/naive_bayes.html)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.5.2"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}